\(\int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx\) [48]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 65 \[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=\frac {\sqrt {-1+x^2} \sqrt {2+3 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {5}{2}} x}{\sqrt {-1+x^2}}\right ),\frac {2}{5}\right )}{\sqrt {5} \sqrt {-2-x^2+3 x^4}} \]

[Out]

1/5*EllipticF(1/2*x*10^(1/2)/(x^2-1)^(1/2),1/5*10^(1/2))*(x^2-1)^(1/2)*(3*x^2+2)^(1/2)*5^(1/2)/(3*x^4-x^2-2)^(
1/2)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1111} \[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=\frac {\sqrt {x^2-1} \sqrt {3 x^2+2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {5}{2}} x}{\sqrt {x^2-1}}\right ),\frac {2}{5}\right )}{\sqrt {5} \sqrt {3 x^4-x^2-2}} \]

[In]

Int[1/Sqrt[-2 - x^2 + 3*x^4],x]

[Out]

(Sqrt[-1 + x^2]*Sqrt[2 + 3*x^2]*EllipticF[ArcSin[(Sqrt[5/2]*x)/Sqrt[-1 + x^2]], 2/5])/(Sqrt[5]*Sqrt[-2 - x^2 +
 3*x^4])

Rule 1111

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[-2*a - (
b - q)*x^2]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*Sqrt[-a]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[ArcSin[x/Sqrt[(2*a +
(b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x] /; IntegerQ[q]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[
a, 0] && GtQ[c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {-1+x^2} \sqrt {2+3 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{2}} x}{\sqrt {-1+x^2}}\right )|\frac {2}{5}\right )}{\sqrt {5} \sqrt {-2-x^2+3 x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.03 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.92 \[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=-\frac {i \sqrt {1-x^2} \sqrt {2+3 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right ),-\frac {2}{3}\right )}{\sqrt {-6-3 x^2+9 x^4}} \]

[In]

Integrate[1/Sqrt[-2 - x^2 + 3*x^4],x]

[Out]

((-I)*Sqrt[1 - x^2]*Sqrt[2 + 3*x^2]*EllipticF[I*ArcSinh[Sqrt[3/2]*x], -2/3])/Sqrt[-6 - 3*x^2 + 9*x^4]

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.82

method result size
default \(-\frac {i \sqrt {6}\, \sqrt {6 x^{2}+4}\, \sqrt {-x^{2}+1}\, F\left (\frac {i x \sqrt {6}}{2}, \frac {i \sqrt {6}}{3}\right )}{6 \sqrt {3 x^{4}-x^{2}-2}}\) \(53\)
elliptic \(-\frac {i \sqrt {6}\, \sqrt {6 x^{2}+4}\, \sqrt {-x^{2}+1}\, F\left (\frac {i x \sqrt {6}}{2}, \frac {i \sqrt {6}}{3}\right )}{6 \sqrt {3 x^{4}-x^{2}-2}}\) \(53\)

[In]

int(1/(3*x^4-x^2-2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*I*6^(1/2)*(6*x^2+4)^(1/2)*(-x^2+1)^(1/2)/(3*x^4-x^2-2)^(1/2)*EllipticF(1/2*I*x*6^(1/2),1/3*I*6^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.07 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.14 \[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=-\frac {1}{2} \, \sqrt {-2} F(\arcsin \left (x\right )\,|\,-\frac {3}{2}) \]

[In]

integrate(1/(3*x^4-x^2-2)^(1/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(-2)*elliptic_f(arcsin(x), -3/2)

Sympy [F]

\[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=\int \frac {1}{\sqrt {3 x^{4} - x^{2} - 2}}\, dx \]

[In]

integrate(1/(3*x**4-x**2-2)**(1/2),x)

[Out]

Integral(1/sqrt(3*x**4 - x**2 - 2), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=\int { \frac {1}{\sqrt {3 \, x^{4} - x^{2} - 2}} \,d x } \]

[In]

integrate(1/(3*x^4-x^2-2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(3*x^4 - x^2 - 2), x)

Giac [F]

\[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=\int { \frac {1}{\sqrt {3 \, x^{4} - x^{2} - 2}} \,d x } \]

[In]

integrate(1/(3*x^4-x^2-2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(3*x^4 - x^2 - 2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {-2-x^2+3 x^4}} \, dx=\int \frac {1}{\sqrt {3\,x^4-x^2-2}} \,d x \]

[In]

int(1/(3*x^4 - x^2 - 2)^(1/2),x)

[Out]

int(1/(3*x^4 - x^2 - 2)^(1/2), x)